If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+6=101
We move all terms to the left:
v^2+6-(101)=0
We add all the numbers together, and all the variables
v^2-95=0
a = 1; b = 0; c = -95;
Δ = b2-4ac
Δ = 02-4·1·(-95)
Δ = 380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{380}=\sqrt{4*95}=\sqrt{4}*\sqrt{95}=2\sqrt{95}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{95}}{2*1}=\frac{0-2\sqrt{95}}{2} =-\frac{2\sqrt{95}}{2} =-\sqrt{95} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{95}}{2*1}=\frac{0+2\sqrt{95}}{2} =\frac{2\sqrt{95}}{2} =\sqrt{95} $
| -9r=-2r^2-9 | | s^2=-4s-4 | | 15=3x/5 | | x+(2x-20)+(2(2x-20)-200)=1035 | | 5q^2+2=-7q | | x-12+9x=-8x-18 | | 15=3/x5 | | -3w=-6w^2 | | x+(2x-20)+(2(2x-20)-200=1035 | | 2x-5+10+6=180 | | 5r=-4r^2 | | 3=-u^2 | | 25+5x-10=180 | | 4-6n=60-2 | | 9u=-2u^2 | | -4(b-2)+4b=10b+3 | | 2u^2-2u=-1 | | 6x+25=4x+15 | | -4=-4t^2-5t | | 6x+14+8x+45=180 | | 4(p+6)=4(p+3) | | 21=-14x-7 | | 8=-2x^2 | | 5x+25=4x+15 | | 5+12x=6x+5+6x | | 7z^2-1=0 | | 4x+18+8x+2+45=180 | | q^2+6q=-9 | | (3-2i)-(4-5i)=0 | | 10x-2x=30+2 | | 16+6x-2+22=180 | | F(x)=3x^2-6x-15 |